Abundance of C-robust homoclinic tangencies
نویسنده
چکیده
A diffeomorphism f has a C-robust homoclinic tangency if there is a C-neighbourhood U of f such that every diffeomorphism in g ∈ U has a hyperbolic set Λg, depending continuously on g, such that the stable and unstable manifolds of Λg have some non-transverse intersection. For every manifold of dimension greater than or equal to three, we exhibit a local mechanism (blender-horseshoes) generating diffeomorphisms with C-robust homoclinic tangencies. Using blender-horseshoes, we prove that homoclinic classes of C-generic diffeomorphisms containing saddles with different indices and that do not admit dominated splittings (of appropriate dimensions) display C-robust homoclinic tangencies. keywords: chain recurrence set, dominated splitting, heterodimensional cycle, homoclinic class, homoclinic tangency, hyperbolic set. MSC 2000: 37C05, 37C20, 37C25, 37C29, 37C70.
منابع مشابه
Rigorous Computations of Homoclinic Tangencies
In this paper, we propose a rigorous computational method for detecting homoclinic tangencies and structurally unstable connecting orbits. It is a combination of several tools and algorithms, including the interval arithmetic, the subdivision algorithm, the Conley index theory, and the computational homology theory. As an example we prove the existence of generic homoclinic tangencies in the Hé...
متن کاملGeneralized Hénon Map and Bifurcations of Homoclinic Tangencies
Abstract. We study two-parameter bifurcation diagrams of the generalized Hénon map (GHM), that is known to describe dynamics of iterated maps near homoclinic and heteroclinic tangencies. We prove the nondegeneracy of codim 2 bifurcations of fixed points of GHM analytically and compute its various global and local bifurcation curves numerically. Special attention is given to the interpretation o...
متن کاملC-robust Transitivity for Surfaces with Boundary
We prove that C-robustly transitive diffeomorphisms on surfaces with boundary do not exist, and we exhibit a class of diffeomorphisms of surfaces with boundary which are C−robustly transitive, with k ≥ 2. This class of diffeomorphisms are examples where a version of Palis’ conjecture on surfaces with boundary, about homoclinic tangencies and uniform hyperbolicity, does not hold in the C−topolog...
متن کاملOn bifurcations of area-preserving and non-orientable maps with quadratic homoclinic tangencies
We study bifurcations of non-orientable area-preserving maps with quadratic homoclinic tangencies. We study the case when the maps are given on non-orientable two-dimensional surfaces. We consider one and two parameter general unfoldings and establish results related to the emergence of elliptic periodic orbits.
متن کاملA Geometric Criterion for Positive Topological Entropy II: Homoclinic Tangencies
In a series of important papers [GS1,GS2] Gavrilov and Shilnikov established a topological conjugacy between a surface diffeomorphism having a dissipative hyperbolic periodic point with certain types of quadratic homoclinic tangencies and the full shift on two symbols, thus exhibiting horseshoes near a tangential homoclinic point. In this note, which should be viewed of as an addendum to [BW], ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009